Crowd Motion Analysis Based on Social Force Graph with Streak Flow Attribute
نویسندگان
چکیده
Over the past decades, crowd management has attracted a great deal of attention in the area of video surveillance. Among various tasks of video surveillance analysis, crowd motion analysis is the basis of numerous subsequent applications of surveillance video. In this paper, a novel social force graph with streak flow attribute is proposed to capture the global spatiotemporal changes and the local motion of crowd video. Crowd motion analysis is hereby implemented based on the characteristics of social force graph. First, the streak flow of crowd sequence is extracted to represent the global crowd motion; after that, spatiotemporal analogous patches are obtained based on the crowd visual features. A weighted social force graph is then constructed based on multiple social properties of crowd video. The graph is segmented into particle groups to represent the similar motion patterns of crowd video. A codebook is then constructed by clustering all local particle groups, and consequently crowd abnormal behaviors are detected by using the Latent Dirichlet Allocation model. Extensive experiments on challenging datasets show that the proposed method achieves preferable results in the application of crowd motion segmentation and abnormal behavior detection.
منابع مشابه
Crowd Motion Analysis: Segmentation, Anomaly Detection, and Behavior Classification
The objective of this doctoral study is to develop efficient techniques for flow segmentation, anomaly detection, and behavior classification in crowd scenes. Considering the complexities of occlusion, we focused our study on gathering the motion information at a higher scale, thus not associating it to single objects, but considering the crowd as a single entity. Firstly, we propose methods fo...
متن کاملAbnormal Crowd Motion Detection with Hidden Markov Model
stations,etc. With the increasing demand of surveillance of various human activities, an efficient automated surveillance system to detect anomalies has become important. There is a survey on visual surveillance in [1], and a lot of problems have not resolved in surveillance applications nowadays as discussed in some papers [2]. Crowd feature extraction and crowd modeling are two important appr...
متن کاملWeighted Interaction Force Estimation for Abnormality Detection in Crowd Scenes
In this paper, we propose a weighted interaction force estimation in the social force model(SFM)-based framework, in which the properties of surrounding individuals in terms of motion consistence, distance apart, and angle-of-view along moving directions are fully utilized in order to more precisely discriminate normal or abnormal behaviors of crowd. To avoid the challenges in object tracking i...
متن کاملFinal Examination of Ramin Mehran for the degree of Doctor of Philosophy
In this dissertation, we address the problem of discovery and representation of group activity of humans and objects in a variety of scenarios, commonly encountered in vision applications. The overarching goal is to devise a discriminative representation of human motion in social settings that captures a wide variety of human activities observable in video sequences. Such motion emerges from th...
متن کاملAnnouncing the Final Examination of
In this dissertation, we address the problem of discovery and representation of group activity of humans and objects in a variety of scenarios, commonly encountered in vision applications. The overarching goal is to devise a discriminative representation of human motion in social settings that captures a wide variety of human activities observable in video sequences. Such motion emerges from th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Electrical and Computer Engineering
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015